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Abstract

Data structures play a crucial role in the efficient implementation of local search algorithms for problems that re-

quire circuit optimization in graphs. The traveling salesman problem (TSP) is the benchmark problem used in this study

where two implementations of the stem-and-cycle (S&C) ejection chain algorithm are compared. The first implemen-

tation uses an Array data structure organized as a doubly linked list to represent TSP tours as well as the S&C reference

structure. The second implementation considers a two-level tree structure. The motivation for this study comes from the

fact that the S&C neighborhood structure usually requires subpaths to be reversed in order to preserve a feasible

orientation for the resulting tour. The traditional Array structure proves to be inefficient for large-scale problems since

to accomplish a path reversal it is necessary to update the predecessor and the successor of each node on the path to be

reversed. Computational results performed on a set of benchmark problems up to 316,228 nodes clearly demonstrate

the relative efficiency of the two-level tree data structure.

� 2004 Elsevier B.V. All rights reserved.
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1. Introduction

Generically, the traveling salesman problem

(TSP) consists in sequentially visiting a set of cli-

ents (cities, locations) only once and finally

returning to the initial client. The goal is to find the
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tour of minimum total distance (or other cost

measure associated with the performed trajectory).
In graph theory, the problem can be defined as

a graph G ¼ ðV ;AÞ with n vertices (or nodes)

V ¼ fv1; . . . ; vng and a set of edges A ¼ fðvi; vjÞjvi;
vj 2 V ; i 6¼ jg with a non-negative cost (or dis-

tance) matrix C ¼ ðcijÞ associated with A. The

problem’s resolution consists in determining the

minimum cost Hamiltonian cycle on the problem

graph. In this paper, we consider the symmetric
version of the problem ðcij ¼ cjiÞ, which satisfies

the triangular inequality ðcij þ cjk P cikÞ.
ed.
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Fig. 1. The stem-and-cycle reference structure.
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The TSP is well known as a NP-hard combi-
natorial problem; hence, there is no algorithm

capable to solve all possible instances in polyno-

mial time. Consequently, it becomes absolutely

necessary to use heuristic (or approximate) algo-

rithms to provide solutions that are as good as

possible but not necessarily the optimal. The

importance of obtaining efficient heuristics to solve

large-scale TSPs recently motivated Johnson,
McGeogh, Glover, and Rego to organize the ‘‘8th

DIMACS Implementation Challenge’’ specific for

TSP algorithms [5]. This paper is based on the

development of several algorithmic components

and data structures with the purpose of improving

the efficiency of the stem-and-cycle algorithm de-

scribed in Rego [9].

A fundamental aspect forming the basis for this
study concerns the following. The data structure

representation of a symmetric TSP tour requires

the specification of an orientation by which the

tour can be read (or traversed), even though the

cost of crossing in one direction or in the opposite

direction is equivalent. The relevance of this ori-

entation becomes more evident with local search

algorithms where moves often require the reversal
of a subpath in order to preserve an admissible

orientation for a TSP tour.

A typical example of the need to reverse paths

occurs in the application of classic procedures of

the type k-optimal, initially proposed for the TSP

[7]. The same phenomenon occurs with the moves

generated in some subpath using ejection chain

methods, in particular those oriented by a refer-
ence structure.

Naturally, the need to reverse paths at each

iteration of the algorithm requires a computa-

tional effort that becomes particularly relevant

when large-scale problems have to be solved.

The choice of the data structure to represent

TSP solutions is crucial when applying neigh-

borhood structures that require path reversals,
since the algorithm’s complexity might drastically

be reduced. Fredman et al. [2] show the rele-

vance of that choice on their implementation of

the Lin–Kernighan algorithm [8] by comparing the

computational times obtained by several imple-

mentations using four different data structures:

Array, splay-tree, two-level tree and segment tree.
The main goal of this study consists in analyz-
ing and validating the potential of the two-level

tree data structure in reducing the running time of

the stem-and-cycle algorithm [9] with the aim of

improving the algorithm’s efficiency in solving

large-scale problems.

The motivation for this study comes from the

fact that the stem-and-cycle algorithm has proved

to be extremely effective and competitive with the
best algorithms for the TSP [3,6]. We therefore

anticipated that the algorithm’s efficiency when

solving large scale problems can be improved by

the implementation of a data structure specifically

designed to reduce the computational complexity

associated with the path reversal operations nee-

ded at each iteration of the algorithm.
2. Data structures for the S&C procedure

2.1. The stem-and-cycle reference structure

The stem-and-cycle (S&C) reference structure is

described in Glover [4] and used in the subpath

ejection algorithm described in Rego [9] for the
TSP.

In graph theory, the S&C structure is defined by

a spanning subgraph of G, consisting of a path

ST ¼ ðvt; . . . ; vrÞ called the stem, attached to a

cycle CY ¼ ðvr; vs1 ; . . . ; vs2 ; vrÞ. Vertex vr in com-

mon to the stem and the cycle is called the root

and, consequently, its adjacent vertices vs1 and vs2
are called subroots. Finally vertex vt is called the
tip of the stem. Fig. 1 shows a representation of the

stem-and-cycle structure.
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The ejection chain method starts by creating the
S&C structure from an initial tour. This is done by

linking two nodes of the tour and removing one of

the edges adjacent to one of those nodes. The

selection of the edge to be removed immediately

defines the root node for the entire ejection chain.

Fig. 2 illustrates one of the possibilities to create

the initial S&C structure. In the example, dotted

lines represent the edges to be inserted in the new
solution and the dashed lines point out possible

edges to be removed from the solution. This rep-

resentation will be adopted in all the figures

describing moves through out this paper.

In an ejection chain a reference structure is used

to generate ejection moves, which transform a ref-
Fig. 2. Creating the initial st
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Fig. 3. Cycle-ejec
erence structure into another of the same type. Since
the resulting structure obtained at each level of the

chain (through the application of an ejection move)

usually does not represent a feasible tour, a trial

move is required to restore the solution feasibility.

We define two types of ejection moves:

Cycle-ejection move, insert an edge ðvt; vpÞ,
where vp belongs to the cycle. Choose an edge

of the cycle ðvp; vqÞ to be removed, where vq is one
of the two adjacent vertices of vp. Vertex vq be-

comes the new tip.

Stem-ejection move, insert an edge ðvt; vpÞ, where
vp belongs to the stem. Identify the edge ðvp; vqÞ so
that vq is a vertex on the subpath ðvt; . . . ; vpÞ (in the

original structure). Vertex vq becomes the new tip.
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Fig. 3 illustrates an example of the application
of a cycle-ejection move. Node t is connected to

one of the cycle’s nodes, in this case node p,
causing the deletion of one of the two edges linking

p to its adjacent nodes, in order to preserve a S&C

structure. Hence, this type of move provides two

possibilities to transform one reference structure

into another.

It is important to notice that the opera-
tion used to create the initial S&C structure

is also a cycle-ejection move that starts with a

degenerated S&C structure (an Hamiltonian

cycle) where the root and the tip are the same

node.
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The application of a stem-ejection move is
illustrated in Fig. 4. In this move, node t is con-

nected to node p in the stem; therefore, node q
adjacent to p in the path ðp; . . . ; tÞ is deleted. This
type of move only provides one possibility to

transform the S&C structure.

Up to this point, the path reversal issue has not

been mentioned for this method. However, from

the standpoint of computer implementation an
orientation is necessary to make it possible to read

the structure. Consequently, the application of any

ejection move may create the need to reverse part

of the structure to keep a feasible orientation. This

issue will be discussed in detail in Section 2.3.
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Now, it is necessary to explain how to obtain a
TSP solution from a S&C structure by appropriate

trial moves.

Fig. 5 shows two possibilities for generating

trial solutions that can be obtained from one of the

resulting S&C structures in Fig. 3. Trial solutions

are obtained by inserting an edge ðvt; vsÞ, where vs
is one of the subroots, and removing edge ðvr; vsÞ.

2.2. The two-level tree representation

The two-level tree data structure (two-level tree)

initially proposed by Chrobak et al. [1] appears as
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See Fredman et al. [2] for a comparative study on
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The two-level tree structure consists of two

interconnected doubly linked lists forming two

levels of a tree. The first list defines a set of Parent
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oriented path, and the right association of all the

paths represents a TSP solution. Fig. 6 shows the
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example for the representation of the tour (0, 7, 1,
5, 2, 4, 6, 3, 0) in a two-level tree structure.

Besides Next and Previous pointers, each

member of a segment contains a pointer to the

associated Parent node, the index of the client it

represents (Client), and a sequence number (ID).

The numbering within one segment is required to

be consecutive (but it does not need to start at 1)

since each ID indicates the relative position of that
element in the segment.

The Parent node construction contains impor-

tant information about the associated segment

such as the total number of clients (Size), pointers

to the segment’s endpoints, a sequence number

(ID), and a reverse bit (Reverse) that indicates

whether the segment should be read from left to

right (if it is set to 0) or in the opposite direction (if
it is 1). This makes possible to reverse the orien-

tation of an entire segment just by flipping the

reverse bit of its Parent node. This is the main

feature that may drastically reduce the computa-

tion time of neighborhood search algorithms

dealing with the optimization of circuits in graphs

or networks.

Also, it is important to notice that client nodes
are organized in an array structure allowing
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Fig. 7. Path reversal:
random access to any client node in the two-level
tree.

2.3. Path reversal in S&C

In this section we specify when the need to re-

verse subpaths arises during the application of the

S&C moves described in Section 2.1. Considering

an orientation for both the stem and the cycle in
the examples illustrated, it seems quite obvious

which subpath of the structure must be reversed in

order to preserve a feasible S&C structure. Like-

wise, after selecting the orientations in the S&C

structure of Fig. 5 we can easily find out that at

least for trial solution 2, it is imperative to reverse

the orientation of a subpath of the structure, for

example the one containing the edges belonging to
the stem, so that the resulting structure represents

a valid TSP solution (cf. Fig. 7).

Likewise, the application of any of the two

types of ejection moves may require reversing a

subpath of the reference structure. Considering the

orientation chosen in Fig. 8 for the S&C structure

of Fig. 3, the application for the cycle-ejection

move causes the path ðr; . . . ; tÞ to be reversed
(denoted by the thick arrows).
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Fig. 9 shows the application of a stem-ejection

move where the path (q; . . . ; t) has been reversed in

order to obtain a valid S&C structure.
It is important to point out that we can always

choose one of two possible paths to reverse. In

fact, in the cycle-ejection move represented in Fig.

8, we could reverse path ðp; . . . ; rÞ instead of path

ðt; . . . ; rÞ. For the stem-ejection move of Fig. 9, the

choice could be the path ðp; . . . ; rÞ. Also, for the

trial move in Fig. 7, we could reverse path

ðs2; . . . ; rÞ; and generate a valid S&C structure.

2.4. Implementation details

Because the S&C structure usually does not

represent a Hamiltonian cycle and different rules

for ejections moves apply to the stem and the cy-

cle, a presence bit has been added to the Parent

node structure to indicate whether one node be-
longs to the stem or to the cycle (cf. Fig. 10). (Note

that when the array is the data structure used to

represent the S&C structure this information is
stored for every node of the structure.) Since each

Parent node represents a segment in the two-level

tree, specialized two-level tree update operations

are necessary to ensure that the whole segment is

either part of the stem or the cycle.
A possible two-level tree representation of a

S&C structure is shown in Fig. 11. In order to

simplify the illustration we restricted Parent node

information to the presence bit, the reverse bit, and

the sequence number. We also restricted node

information to the index of the client it represents.

The bidirectional arrows represent links in both
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directions and only appear in connections between

segment endpoints and the associated Parent

nodes, representing a pointer to the beginning or to

the end of the segment and a pointer to the asso-

ciated Parent node. For the remaining segment

elements we represent the link to its Parent node. In

both lists the dashed arrows represent Previous

pointers and the other arrows Next pointers.
In the figure, the presence bit (pb) can be

checked for each Parent node to verify that seg-

ments 2 and 3 store the cycle and that the stem

occupies segment 1. For convenience, the root

node is set to be in one of the edges of the cycle

segment and the tip node to be the last node of one

of the stem segments with one null pointer (either

the previous or the next link depending on the
orientation). According to this representation, the

numbering of the Parent nodes will always start at

the segment containing node t. As with node t, the
associated Parent node also fails to define one of

its links.

Besides the compulsory operations regarding

the structure’s orientation, NextðaÞ and PreviousðaÞ
three other operations are necessary, with one
operation for each type of move considered in the

stem and cycle ejection chain method. These

operations can be defined as follows:

NextðaÞ, returns a’s successor in the current

structure. First, the operation finds node a and

follows the pointer to its Parent node. If the re-

verse bit is set to zero, the return value is obtained

by following a’s Next pointer and in the opposite
case following a’s Previous pointer.
PreviousðaÞ, returns a’s predecessor in the cur-

rent structure.

CycleEjectionðr; t; p; qÞ, updates the reference

structure by removing edge ðp; qÞ and inserting edge
ðt; pÞ. Depending on the orientations of the current

structure, the path between t and rmay be reversed.

StemEjectionðr; t; p; qÞ, updates the reference

structure by removing edge ðp; qÞ and inserting
edge ðt; pÞ. This operation reverses the path be-

tween t and q.
Trialðr; t; sÞ, updates the reference structure by

removing edge ðs; rÞ and inserting edge ðt; sÞ.
Depending on the orientations of the current

structure, the path between t and rmay be reversed.

In ejection chain moves, every time the edge to

be deleted is in the same segment, the operation
involves splitting (or partitioning) the segment

between the edge’s nodes and merging one of the

resulting partitions with a neighbor segment.

Since these operations are part of the algorithm,

they appear in both implementations (array and

two-level tree).

Now, we describe in detail how the ejection chain

operations are implemented in order to achieve the
desired algorithm efficiency. For convenience we

define a node a as being the Parent of a node b if the
latter is in the segment that has a as its Parent node.

CycleEjectionðr; t; p; qÞ procedure:
Step 1. Renumbering of the new cycle subpath.

Flip (to 1) the presence bit of the Parent

nodes associated with segments of the new
cycle subpath (between t and r).
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Step 2. Reorganizing the structure.

If p and q are in the same segment, orga-

nize the structure for splitting the segment

between those nodes as follows (otherwise

go to Step 3). If the root is in the same

segment as p and q go to 2(a) otherwise go

to 2(b).

(a) If the whole cycle is in the same segment
go to (i) otherwise go to (ii).
(i) Update one of the root links to make

possible the segment partitioning––

link the root to the new subroot that

is in the stem of the original structure.

Merge the segment partition that con-

tains the root node and then split this

latter again to make the root node a
segment endpoint. The merge must

be with the neighbor segment different

from the one that originally contained

nodes p and q. These operations re-

quire updating links between the new

root’s Parent and one of the adjacent

Parent nodes––the one associated with

the subroot that keeps belonging to the
cycle. Go to Step 3.

(ii) Merge the partition that does not con-

tain the root node. Go to Step 3.

(b) Perform a legitimate merge based on the

presence bit of the Parent nodes of the

adjacent segments preventing a merge with

a segment that contains the root as the

endpoint to be linked to the first node of
the partition.

Step 3. Setting up links between p and t.
Set up the appropriate Next and Previ-

ous pointers in order to link nodes p
and t.

Step 4. Setting up links between the Parent nodes

associated with p and t.
Set up the appropriate Next and Previous

pointers in order to link the Parent nodes

of p and t.
Step 5. Reversing the path between t and r.

If reversing is not necessary go to Step 6.

Reverse Next and Previous pointers for

each Parent of inner segments in the stem

and flip the reverse bit for each Parent of

reversed segments.
Step 6. Inserting the root in a cycle-segment.

If the root is in a stem-segment move it to

a cycle-segment.

Step 7. Setting up the link between r and the new

subroot.

If step (i) was not performed, update one

of the Next and Previous pointers of node

r in order to connect the root to the new
subroot.

Step 8. Setting up links between r and the new sub-

root Parent nodes.

If step (i) was not performed, set up the

appropriate Previous and Next pointers in

order to link the root and the new subroot

Parent nodes.

Step 9. Numbering the new stem (between q and r).
Set to 0 the presence bit for Parent nodes

of segments containing the new stem.

Step 10. Renumbering the sequence numbers of the

Parent nodes.

Starting from the tip’s Parent node, re-

number the ID numbers of Parent nodes.

Step 2 needs additional clarification. If the cycle
only takes one segment (e.g. case (i)) it will not be

possible to split the segment since there are no

adjacent segments available for completing the

associated merge (cf. Fig. 12).

This problem can be solved by updating the link

between the root node and the new subroot before

splitting the segment. After the merge another

problem arises as the root appears in the middle of
the segment. The solution to this setback consists

of splitting the segment and merging one of the

resulting partitions with the sole possible adjacent

segment, making the root as an endpoint of one of

those segments (cf. Fig. 13).

Concerning case (ii) only the segment’s parti-

tion that does not contain the root can be merged

since there is not a legitimate segment adjacent to
the root. If the root is not in the same segment as p
and q (case 2(b)), the merge is decided by taking

into consideration the values of the presence bit of

both neighbor segments and the position of the

root in those segments. The crucial decision con-

cerns the root as its presence in one of the possible

segments immediately rules out the merge with

that segment because it would place the root in the
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middle of the segment. However, if the root causes
no problem then the choice is taken realizing that

the segment’s partition containing q will become

part of the stem and therefore should be merged

into a stem segment. In the same way the seg-

ment’s partition containing p should be merged

into a cycle segment.

Fig. 14 exemplifies the execution of this opera-

tion based on themove illustrated in Fig. 8. The first
tree structure represents a possible node distribu-

tion for the initial reference structure throughout

the three tree segments. The second structure is the

resulting tree right after performing the appropriate

steps of the CycleEjection prodecure.

Initially, the cycle occupies segments 2 and 3

while the stem resides in segment 1. The operation

involves numbering the new part of the cycle,
Initial Structure
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Structure

3 2
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Fig. 14. Two-level tre
which is attained by setting to 1 the presence bit of
Parent 1. Since p and q are in the same segment, it

must be split between those nodes, and node p
must be merged to the initial segment 3. This is

because although the root is in the split segment,

the cycle occupies more than one segment. With

this merge the root is placed in a stem-segment

hence it is necessary to merge it into segment 3. Set

up the links between p and t and between the
associated Parent nodes. Reverse the path between

t and r which is accomplished by flipping the re-

verse bit (rb) of Parent 1. Set up links between the

root and its new subroot (node 6) and between the

associated Parent nodes. Flip the presence bit of

Parent 2 so as to number the new stem. Finally,

reorder the ID numbers of the Parent nodes

starting at the new tip’s Parent node.
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StemEjectionðr; t; p; qÞ procedure:
Step 1. Reorganizing the structure.

If nodes p and q are in the same segment,

organize the structure for splitting the

segment between those nodes as follows

(otherwise go to Step 2). If node t is in the

same segment as p and q, go to 1(a),

otherwise go to 1(b).
(a) Merge the partition that does not contain

t. If the merge is to be made with a cycle

segment, split this latter to create a stem-

segment and a cycle-segment. Perform

the merge with the cycle-segment just cre-

ated and set to 0 the presence bit of the

new stem-segment. Appropriately update

the links between the Parent node of the
new segment containing the root node

and the adjacent Parent node containing

the subroot that was not in the same seg-

ment of r before the merge. Go to Step 2.

(b) Perform a legitimate merge based on the

presence bit of the Parent nodes of the

adjacent segments. The merge must be

with a stem-segment. If both neighbors
are stem-segments, perform the merge

with the shortest segment.

Step 2. Setting up links between p and t.
Set up the appropriate Next and Previous

pointers in order to link nodes p and t.
Step 3. Setting up links between the Parent nodes

associated with p and t.
Set up the appropriate Next and Previous

pointers in order to link the Parent nodes

of p and t.
Step 4. Reversing the path between t and q.

ReverseNext andPreviouspointers for each

Parent of inner stem-segments in the sub-

path between t and q. Flip the reverse bit for
Parent nodes of segments to be reversed.

Step 5. Renumbering the sequence numbers for par-

ent nodes in the subpath.

Set up a sequence number ID for Parent

nodes in the linked list starting from tip’s

Parent node up to the last Parent before the

root’s Parent node.

If node t appears in the segment to be split in

Step 1 (case 1(a)), merging the partition containing
t is no longer an option. In fact, as explained
earlier, node t does not have a link to an adjacent

segment to be considered for the merge operation.

On the other hand, the obligation to use the

remaining partition may create a problem as the

partition may be merged into a cycle-segment.

This means that after the merge the root is placed

in the middle of a segment and the result is a

segment containing cycle and stem nodes. To
overcome this difficulty, the new segment is split

up in a way that each resulting partition exclu-

sively contains one type of nodes (cycle or stem).

After this operation the partition belonging to the

cycle is merged into its neighbor cycle-segment

leaving the original segment with the stem nodes.

Thus, it is necessary to set the presence bit of the

associated Parent node to 0––the stem now occu-
pies one more segment. Furthermore, given that

this is the only case involving cycle segments when

applying a stem-ejection move, it is necessary to

change the links between the Parent node of the

cycle segment that now contains the root and the

Parent node of the adjacent segment containing

the subroot that was not on the same segment as

the root before the last merge. This special case
occurs in the example showed in Fig. 15.

On the other hand, if node t is not in the same

segment as p and q (case 1(b)), the merge is decided

based on the presence bit of the Parent nodes of

the adjacent segments. The first choice is always

the neighbor that belongs to the stem. However, if

both neighbors are stem-segments, the merge

involving the smaller partition is chosen.
Fig. 15 shows the transformations undergone by

the initial tree after the application of the move

illustrated in Fig. 9. Segment 1 stores the whole

stem and segments 2 and 3 hold the cycle. There-

fore, the execution of the StemEjection procedure

involves: splitting segment 1 between p and q and

merging p into segment 2, which is the only possible

adjacent segment as t is also in segment 1. As the
root appears in the middle of segment 2, this seg-

ment must be split, and the partition containing the

root node must be merged to segment 3. Because

the stem also occupies segment 2, the presence bit

of its Parent node must be set to 0. The final

structure is obtained by changing the following

node information: establishing links between the
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Fig. 15. Two-level tree: stem-ejection.
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Parent node of the new segment containing the
root (segment 3) and the Parent of its neighbor

segment (in the case, the segment 3 itself); estab-

lishing links between p and t and between the

associated Parent nodes; and reversing the path

between t and q just by flipping the value of the

reverse bit of Parent 1. Finally, renumber Parent

node’s ID, if necessary to keep a valid sequence.

Trialðr; t; sÞ procedure:
Step 1. Renumbering of the new cycle subpath.

Flip (from 0 to 1) the presence bit for

Parent nodes associated with segments in

the path between t and r.
Step 2. Reversing the path between t and r.

If subpath reversal is not necessary go to

Step 3.

Reverse the Previous and Next pointers

for each Parent node of inner segments in

the path. Flip the reverse bit for Parent

nodes of segments to be reversed.

Step 3. Setting up links between the root and the

new subroot.
Set up either the Previous or Next pointer
of node r to establish the link between the

root and the new subroot.

Step 4. Setting up the link between the root and the

new subroot Parent nodes.

Set up one of the Previous and Next

pointers for the root’s Parent to connect

the root and the new subroot Parent

nodes.
Step 5. Reorganizing the structure.

If r and s are in the same segment, orga-

nize the structure for splitting this segment

between those nodes, if necessary (other-

wise go to Step 6). This decision is made

based on the following conditions: if r and
s are the endpoints of the segment (and the

size of the segment is greater than 2), go to
5(a) otherwise go to 5(b).

(a) It is not necessary to partition the seg-

ment. Go to Step 6.

(b) Split the segment merging the root

with the segment containing the new
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subroot and update the link between r
and s1 Parent nodes.

Step 6. Setting up links between s and t.
Set up the appropriate Next and Previous

pointers in order to link nodes s and t.
Step 7. Setting up links between s and t Parent

nodes.

Set up the appropriate Next and Previous

pointers in order to link the Parent nodes

of s and t.

If the first possibility occurs in Step 5, it will not

be necessary to split the segment, meaning that it

will be sufficient to establish the new connections

between r and the new subroot and between their

Parent nodes. In the opposite case, the segment is
split and the root is merged into the segment

containing the new subroot using the link created

in Step 3.

An example of this operation based on the

move represented in Fig. 7, is shown in Fig. 16.

Once again the stem occupies segment 1 and the

cycle is distributed throughout the two other seg-
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Fig. 16. Two-level tree
ments. Completing the Trial procedure involves:
converting the stem-segments into cycle-segments

by flipping to 1 the presence bit of Parent 1;

reversing the path between t and r by setting to 1

the reverse bit of Parent 1; linking the root to its

new adjacent node (the new s2, in this case) and

also setting up links between the associated Parent

nodes (since r and s2 are in the same segment but

not endpoints it is necessary to split the segment,
merging the root into the segment of the new s2
(node 0) and set up the links between r and

s1 Parent nodes); setting up links between s2 and t
and between their Parent nodes.

2.5. Experimental results

In order to assess the relative efficiency of the
new stem-and-cycle algorithm implementation

(with the two-level tree data structure) compared

to the original implementation (using the array

data structure), several computational tests were

carried out on three classes of problems. The

testbed consisted of instances used in the ‘‘8th
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DIMACS Implementation Challenge’’ [5] from
classes E (uniformly distributed clients) and C

(clients organized in clusters) as well as a set of

instances from the TSPLIB library [10] with dif-

ferent characteristics and sizes. The tables/graphics

in Figs. 17–19 summarize the obtained computa-

tional results that are relevant for the present

study. A more extensive list of results can be found

in [5]. Besides the designation and size of each
instance, the tables show the total number and

average length of the paths to be reversed during

the algorithm’s execution, the normalized (i.e. di-

vided by n) computational times, the difference

between the running times obtained by the two

implementations, and the number of times the

array version is slower than the two-level tree

version. For the largest problem some of the val-
ues are not reported since it would take to much

time to rerun the array implementation for that

instance.

Runs were performed on a Sun Enterprise with

two 400 MHz Ultra Sparc processors and 1 GB of

memory. Although this is a multiprocessor ma-
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E3k.0 3,162 720,348 669.66 0
E10k.0 10,000 2,272,103 2141.00 0
E31k.0 31,623 8,272,730 6810.98 0
E100k.0 100,000 10,993,795 21690.35 0
E316k.0 316,228 4

n

Fig. 17. Running times (seconds): u
chine, the stem-and-cycle algorithm is imple-
mented as a serial algorithm and no compiler

directives for implicit parallelism are used.

In a general analysis, we can see that the effi-

ciency of the two-level tree implementation over

the array implementation grows with problem size.

Considering the real values (not normalized) we

can verify that in Fig. 17 the array implementation

takes about 15 days to obtain an identical solution
to the one provided by the two-level tree imple-

mentation in less than one day (specifically, 17

hours). According to the results reported in Fig. 18

one can expect the same gain in efficiency for the

clustered type of problems.

The number of paths to be reversed is usually

larger for clustered problems (Fig. 18) than for

uniformly distributed problems (Fig. 17). Never-
theless, the average length of the paths is generally

superior for uniformly distributed problems. We

attribute this fact to the problems structure.

An interesting phenomenon occurs with the last

two problems in Fig. 19, where a much larger

problem requires a smaller number of paths to be
U Times

E31k.0 E100k.0 E316k.0

roblems

Two-Level Tree

Time/n Difference Times(1)
(1) 2L Tree(2) (1)   (2)s — slower than(2)
.013 0.008 0.005 0.6
.041 0.012 0.029 2.4
.124 0.018 0.106 5.9
.438 0.044 0.394 9.0
.926 0.055 0.871 15.8
.231 0.202 4.029 20.0

niformly distributed problems.
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Fig. 18. Running times (seconds): clustered problems.

Normalized CPU Times

0.00

0.50

1.00

pla7397 rl11849 usa13509 d18512 pla33810 pla85900

TSPLIB Problems

(T
im

e 
in

 s
ec

on
ds

)/n

Array Two-Level Tree

Paths to reverse Time/n Difference Times (1)
Problem n Number Length Array(1) 2L Tree(2) (1) — (2) slower than (2)
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pla85900 85,900 13,075,760 19239.09 0.701 0.048 0.653 13.6

Fig. 19. Running times (seconds): TSPLIB problems.

D. Gamboa et al. / European Journal of Operational Research 160 (2005) 154–171 169



Table 1

Running times (seconds) for Lin–Kernighan: pla instances

Problem Size Time/n Difference (1)) (2) Times (1) slower

than (2)Array (1) 2L Tree(2)

pla7397 7,397 0.063 0.034 0.029 0.9

pla33810 33,810 0.220 0.052 0.168 3.2

pla85900 85,900 0.352 0.040 0.312 7.8

Table 2

Running times (seconds) for Lin–Kernighan: random problems

Size Time/n Difference (1)) (2) Times (1) slower than

(2)Array (1) 2L Tree(2)

103 2.2 1.9 0.3 0.2

104 6.5 2.8 3.7 1.3

105 57.3 3.6 53.7 14.9
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reversed. As a result we obtain lower normalized
computational times, which means that the num-

ber of paths to reverse has a dramatic influence in

the running times comparing to average paths’

length.

An interesting result stems from the observation

that the gain in efficiency of the two-level tree

implementation over the array implementation for

the stem-and-cycle algorithm is significantly supe-
rior to the one reported by Fredman et al. [2] for

the Lin–Kernighan algorithm, specially for pla

instances (cf. Tables 1 and 2––since the instances

characteristics are very similar, we can use the

values reported for the S&C algorithm in Fig. 17,

to compare with the results presented in Table 2).

This result clearly demonstrates the effectiveness of

the implementation reported in this study.
3. Conclusions

The main purpose of this study is the design and

development of new data structures seeking to

improve the efficiency of the stem-and-cycle algo-

rithm described in Rego [9]. To achieve this goal,
the study focused on reducing the number of

operations needed to execute path reversals per-

formed during the application of the stem-and-

cycle neighborhood structure. This was done by
creating a special adaptation of the two-level tree
data structure described in Fredman et al. [2] and

successfully used in the implementation of the

well-known Lin–Kernighan algorithm. The sig-

nificant differences between the stem-and-cycle and

the Lin–Kernighan neighborhood structures re-

quired substantial modifications of the operations

described in [2], in order to handle the transfor-

mations that are critical for applying the stem-and-
cycle neighborhood structure.

The results obtained with this new implemen-

tation [5] on a testbed provided for the ‘‘8th DI-

MACS Implementation Challenge’’ [5] clearly

demonstrate the efficiency of the new implemen-

tation over the original version and, more impor-

tantly, establish the stem-and-cycle algorithm as

one of the most efficient methods currently avail-
able for the TSP [3,6].
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